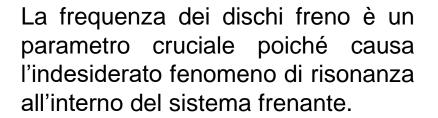
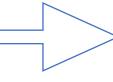


Studio dell'effetto del tempo di raffreddamento in staffa sulla frequenza propria di dischi freno in ghisa per l'ottimizzazione del controllo produttivo

Ing. Elia Scotuzzi

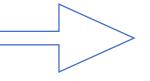

Relatore: Prof.ssa Annalisa Pola

Correlatori: Ing. Sauro Canobbio


Ing. Luca Girelli

Introduzione

Problema progettuale



Problema produttivo

La misurazione della frequenza deve essere effettuata a fine ciclo produttivo affinché il risultato sia affidabile: è necessario ridurre le tempistiche di feedback.

Sviluppare un sistema predittivo in grado di fornire informazioni riguardo alla frequenza dei dischi in tempi rapidi, ottimizzando il controllo di produzione.

Analisi di una realtà produttiva

Lo studio è stato condotto in collaborazione con Fonderia di Torbole S.r.l. e ha analizzato tre differenti dischi freno pieni e grezzi, realizzati in ghisa grigia.

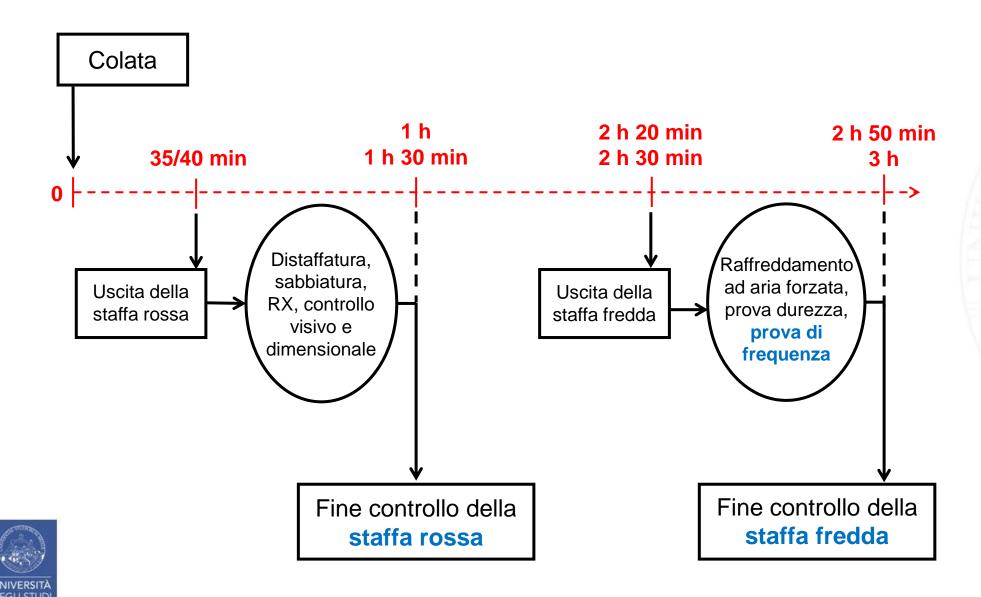
L'ottimizzazione del controllo produttivo proposta in questo studio si basa sull'estrazione dalla linea produttiva di alcuni dischi freno ancora caldi, ma perfettamente solidificati.

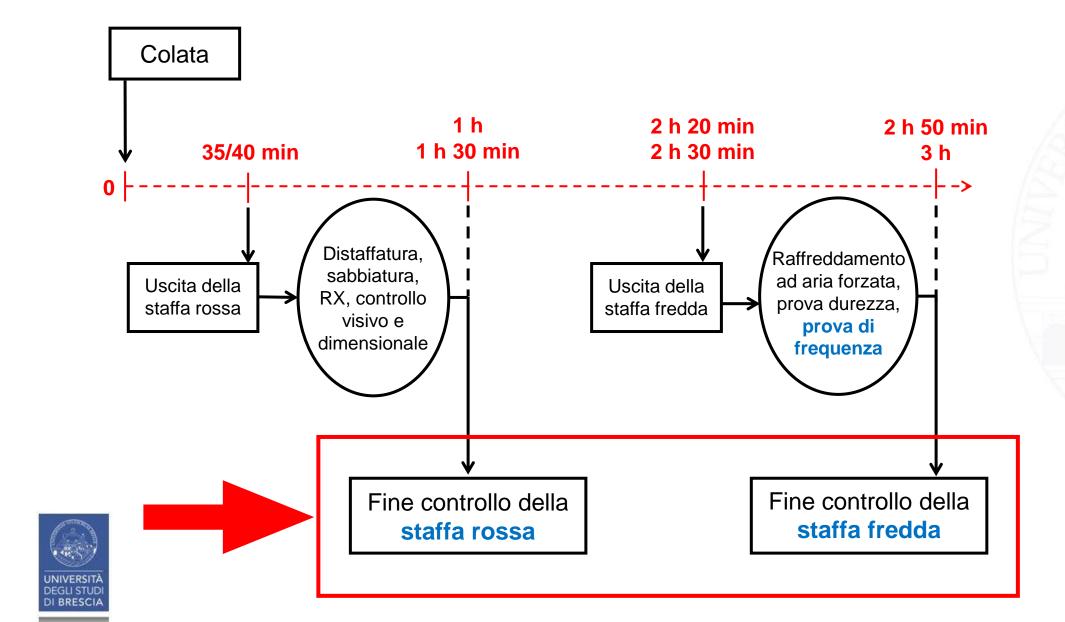
STAFFA FREDDA

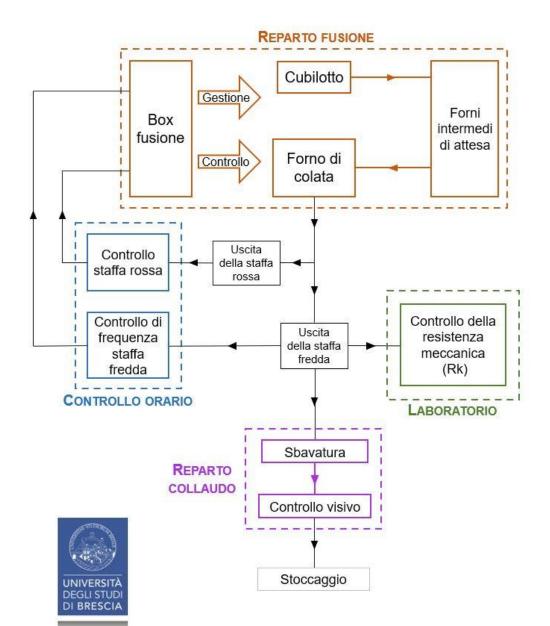
Staffa standard

Getti perfettamente raffreddati

STAFFA ROSSA


Staffa di prova


Getti ancora in temperatura


Schematizzazione delle tempistiche di controllo

Schematizzazione delle tempistiche di controllo

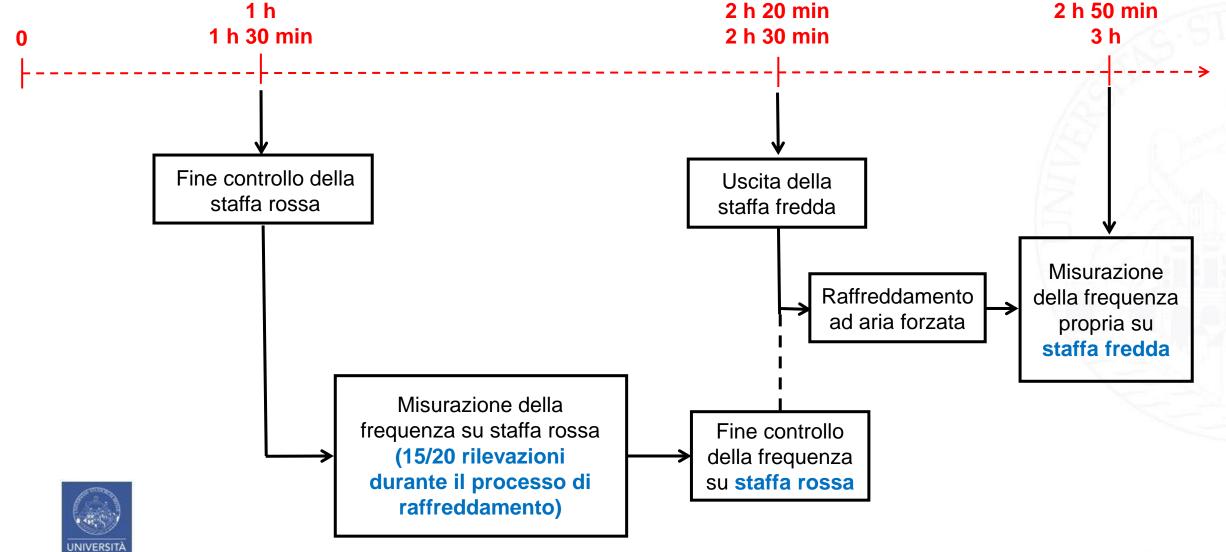
Parametri analizzati

Reparto Fusione

- analisi termica: temperatura di liquidus;
- analisi chimica: carbonio, silicio e titanio.

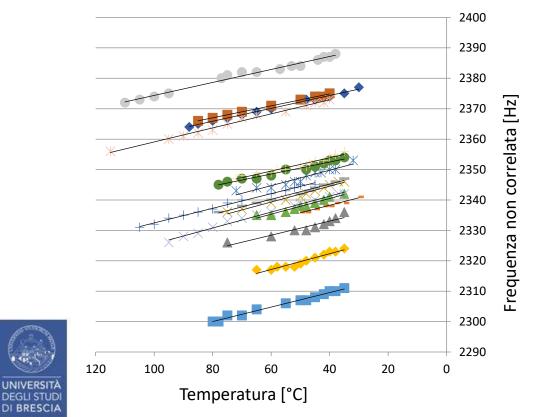
Controllo orario: staffa rossa

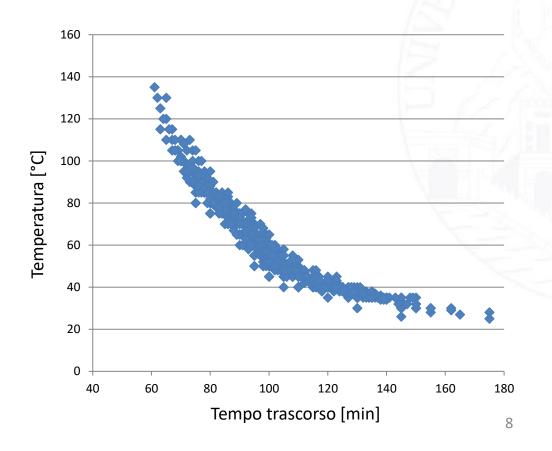
- frequenza a caldo correlata;
- frequenza a caldo non correlata;
- massa;
- temperatura superficiale del disco;
- tempo trascorso dalla colata.


Controllo orario: staffa fredda

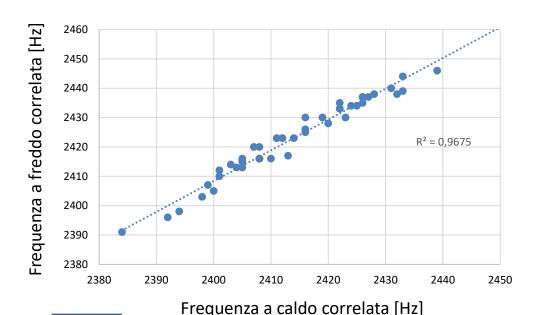
- frequenza a freddo correlata;
- frequenza a freddo non correlata;
- massa.

Laboratorio


 Rk, resistenza meccanica a compressione mediante cuneo.


Procedura sperimentale

Analisi della frequenza durante il raffreddamento


		Numero di staffe	Pendenza della retta		r-squared	della retta
		analizzate	Media	Dev. standard	Media	Dev. standard
Pro	dotto A	28	-0,157	0,022	0,952	0,039
Pro	dotto B	58	-0,210	0,058	0,976	0,016
Pro	dotto C	63	-0,229	0,025	0,970	0,031

Modelli predittivi per l'ottimizzazione di controllo

Mediante l'utilizzo del software di calcolo Minitab sono state ricavate delle formule predittive della frequenza dei dischi appartenenti alla staffa fredda, partendo dai valori misurati su staffa rossa.

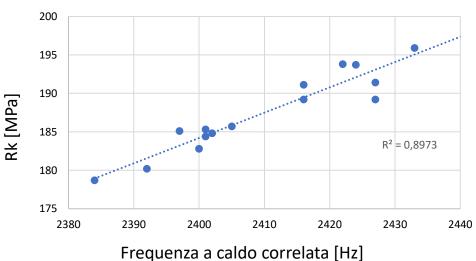
NB Frequenza a caldo=frequenza misurata a 40°C.

Parametro analizzato	Parametri previsionali	r-sq	r-sq adj	r-sq pred
Frequenza a freddo correlata	Frequenza a caldo correlata	96,75%	96,67%	96,42%
		125		
Frequenza a freddo correlata	Frequenza a caldo correlata - T liquidus	97,05%	96,92%	96,60%
			//	-X 4#
Frequenza a freddo non correlata	Frequenza a caldo non correlata - massa getto freddo - massa getto caldo	96,86%	96,63%	96,20%
		L ISSU	1 7/	N III A II
Frequenza a freddo non correlata	Frequenza a caldo non correlata - massa getto freddo - massa getto caldo - T liquidus	97,22%	96,95%	96,55%
Frequenza a freddo correlata	Frequenza a caldo non correlata - massa getto caldo	96,84%	96,69%	96,35%
		•	•	
Frequenza a freddo correlata	Frequenza a caldo non correlata - massa getto caldo - T liquidus	97,22%	97,02%	96,65%

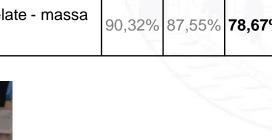
Modelli predittivi tramite i parametri di colata

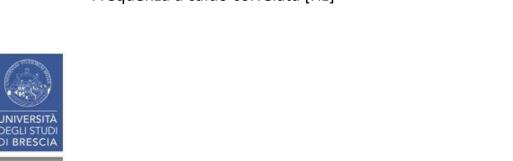
Se non si utilizzassero le staffe rosse, sarebbe possibile prevedere la frequenza della staffa fredda prendendo in considerazione i valori dei parametri di colata, in particolare i risultati dell'analisi termica e dell'analisi chimica.

Crogiolo utilizzato per l'analisi termica


Dettaglio del quantometro, utilizzato per l'analisi chimica

Parametro analizzato	Parametri previsionali	r-sq	r-sq adj	r-sq pred
Frequenza a freddo correlata	T liquidus	61,01%	60,12%	57,34%
		1/2		
Frequenza a freddo correlata	T liquidus - C%	70,67%	69,30%	66,00%
			1/2	
Frequenza a freddo correlata	T liquidus - C% - Ti%	73,59%	71,70%	68,40%
		1. 152		
Frequenza a freddo non correlata	T liquidus - massa getto freddo	80,12%	79,19%	77,36%
Frequenza a freddo non correlata	T liquidus - massa getto freddo - C%	84,48%	83,37%	81,28%
Frequenza a freddo non correlata	T liquidus - massa getto freddo - C% - Ti%	85,65%	84,25%	82,18%


Modelli predittivi del parametro Rk


Tramite le frequenze sia a caldo che a freddo sono state ricavate della opportune formule predittive dei valori di Rk, resistenza meccanica ottenuta mediante la prova di compressione del cuneo.

	200									
Rk [MPa]	195							• • •		
	190						•			
	185				30···0··				$R^2 = 0.897$	3
	180	•								
	175 23	380	2390	24	100	2410	24	20	2430	2440
			Frequ	ienza	a calc	lo corr	elata	[Hz]		

Parametro analizzato	Parametri previsionali	r-sq	r-sq adj	r-sq pred
Rk	Frequenza a caldo correlate	89,73%	88,94%	85,99%
		18		
Rk	Frequenza a caldo non correlate - massa getto caldo	91,26%	89,81%	86,01%
			y/y	
Rk	Frequenza a freddo correlate	91,09%	89,97%	86,88%
		TEN.		الم الكامر
Rk	Frequenza a freddo non correlate - massa	90,32%	87,55%	78,67%

Dettaglio della macchina di prova di compressione del cuneo

Validazione dei risultati ottenuti: prodotto C

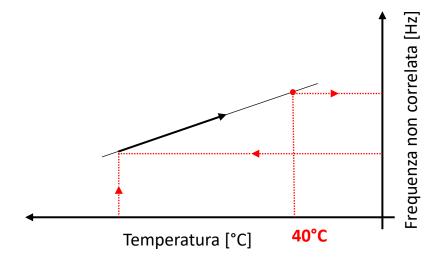
La validità dei modelli previsionali sviluppati e la fattibilità dell'ottimizzazione del controllo di frequenza sono state valutate mediante l'applicazione al contesto produttivo delle formule di correlazione ricavate.

Data	Lotto	Linea produttiva	Ora di colata
27-nov	L485	1	16.30
T liquidus [°C]	C %	Si %	Ti %
1203,3	3,2583	1,9721	0,0216
Frequenza a caldo correlata [Hz]	Frequenza a caldo non correlata [Hz]	Massa staffa rossa [Kg]	Rk cappello
2415	2364	6,37	191,6
Frequenza a freddo non correlata [Hz]	Frequenza a freddo non correlata [Hz]	Massa getto freddo [Kg]	
2425	2397	6,35	

San	
	I <mark>IVERSITÀ</mark> GLI STUDI
	BRESCIA

Parametro analizzato	Parametri previsionali	r-sq pred	Valori previsti	Valori reali
Frequenza a freddo correlata	Frequenza a caldo correlata – T liquidus	96,60%	2426 Hz	2425 Hz
Frequenza a freddo correlata	Frequenza a caldo correlata - massa getto caldo – T liquidus	96,65%	2425 Hz	2425 Hz
Frequenza a freddo correlata	T liquidus - C% - Ti%	68,40%	2432 Hz	2425 Hz
Frequenza a caldo correlata	T liquidus - C% - Ti%	59,47%	2422 Hz	2415 Hz
Rk	Frequenza a caldo correlata	85,99%	189,2 MPa	191,3 MPa

Validazione dei risultati ottenuti: prodotti A e B


Parametro analizzato	Parametri previsionali	r-sq pred	Valori previsti	Valori reali
Frequenza a freddo correlata	Frequenza a caldo correlata – T liquidus	97,14%	1611 Hz	1611 Hz
Frequenza a freddo correlata	Frequenza a caldo non correlata - massa getto caldo - T liquidus	96,05%	1610 Hz	1611 Hz
Frequenza a freddo correlata	T liquidus - C% - Ti%	76,93%	1606 Hz	1611 Hz
Frequenza a caldo correlata	T liquidus - C% - Ti%	69,04%	1599 Hz	1606 Hz
Rk	Frequenza a caldo correlata	74,01%	184,9 MPa	182,4 MPa

Parametro analizzato	Parametri previsionali	r-sq pred	Valori previsti	Valori reali
Frequenza a freddo correlata	Frequenza a caldo correlata – T liquidus	94,39%	2198 Hz	2200 Hz
Frequenza a freddo correlata	Frequenza a caldo correlata - massa getto caldo – T liquidus	93,94%	2198 Hz	2200 Hz
Frequenza a freddo non correlata	Massa getto freddo - T liquidus - Ti% - C%	70,07%	2189 Hz	2200 Hz
Frequenza a caldo non correlata	Massa getto caldo - T liquidus - C% - Ti%	72,39%	2181 Hz	2192 Hz
Rk	Frequenza a caldo correlata	74,98%	193,0 MPa	196,9 MPa

Conclusioni

- Sono stati analizzati tre diversi dischi freno pieni grezzi, realizzati in ghisa grigia.
- L'andamento della frequenza al diminuire della temperatura è crescente e lineare: è possibile conoscere il valore della frequenza a caldo di riferimento (40°C) mediante semplice interpolazione lineare.

- Partendo dalle misurazioni su staffa rossa, sono state sviluppate opportune formule predittive della frequenza a freddo e della resistenza meccanica, in grado di ottimizzare il controllo produttivo.
- Il modello sviluppato è stato testato al contesto produttivo ed ha fornito risultati con elevata affidabilità.

Grazie per l'attenzione

