

Ofonderie ariotti

Resistenza a fatica multiassiale di provini lisci e intagliati estratti da grandi getti di ghisa duttile EN-GJS-600-3: un approccio Strain Energy Density per la sensibilità ai difetti

M. Pedranz*, C. Santus, V. Fontanari, D. Lusuardi, F. Berto, M. Benedetti

*Dipartimento di Ingegneria Industraile, Università degli Studi di Trento, via Sommarive 9, 38123 Trento, Italia matteo.pedranz@unitn.it

36° Congresso Tecnico di Fonderia

21-22 Novembre 2022

Introduzione

Le **ghise sferoidali** trovano sempre più applicazione in importanti settori industriali, come la produzione di energia eolica, le presse e le infrastrutture.

L'alta castabilità consente di produrre componenti grandi e con forme complesse, che di solito sono esposti a carichi multiassiali variabili nel tempo.

Le cricche a fatica nucleano generalmente sui piani sottoposti alla massima ampiezza di sollecitazione normale.

Il **carico fuori fase migliora le proprietà a fatica**, mentre è generalmente dannoso per altri materiali metallici, come gli acciai.

Proponiamo un **nuovo criterio di fatica multiassiale** basato sulla densità di energia di deformazione (SED) per ghise duttili, in grado di tenere conto dell'effetto fase, nonché degli altri parametri di fatica multiassiale.

Dati sperimentali

Materiale: ghisa duttile EN-GJS-600-3, con matrice perlitica

Dati sperimentali

Carico torsionale

Approccio locale Strain energy density (SED)

La **rottura a fatica**, per un generico intaglio, avviene verifica quando la densità di energia di deformazione (SED) mediata su un volume di controllo raggiunge un valore SED critico:

$$\overline{W} = W_c$$

 W_c è definito come il SED di un provino liscio:

$$\frac{\sigma^2}{2E}$$
 for mode I loading

$$\frac{\tau^2}{2G}$$
 for mode III loading

Questo criterio presuppone che il **volume di controllo** e il **SED** di un campione liscio assumano **valori diversi per il carico in modo I e III**.

Dati sperimentali

Distribuzione dei difetti

Tomografia computerizzata

Strain energy density Raggi di controllo

Notches with different severities

SED control volume

SED control radii R_3 R_1 A = 0.3 D/2 D/2

Funzioni di inversione

Raggio di fondo intaglio normalizzato

Fattore di concentrazione degli sforzi a fatica

$$R_{1} = \frac{D}{2} f_{inversion,1} \left(\frac{R}{D/2}, \frac{\sigma_{a}^{*}}{\sigma_{a,N}} \right); \quad K_{f,N,1} = \frac{\sigma_{a}^{*}}{\sigma_{a,N}}$$

$$R_{3} = \frac{D}{2} f_{inversion,3} \left(\frac{R}{D/2}, \frac{\tau_{a}^{*}}{\tau_{a,N}} \right); \quad K_{f,N,3} = \frac{\tau_{a}^{*}}{\tau_{a,N}}$$

$$R_3 = \frac{D}{2} f_{inversion,3} \left(\frac{R}{D/2}, \frac{\tau_a^*}{\tau_{a,N}} \right); K_{f,N,3} = \frac{\tau_a^*}{\tau_{a,N}}$$

Raggio di controllo SED

$$R_1$$
, R_3 sono costanti

Funzione di inversion SED

Proprietà del materiale

Resistenza a fatica intrinseca (materiale privo di pori)

$$\frac{D_{sharp}}{2} f_{inversion} \left(\frac{R_{sharp}}{D_{sharp}/2}, \frac{\sigma_a^*}{\sigma_{a.sharp}} \right) = \frac{D_{blunt}}{2} f_{inversion} \left(\frac{R_{blunt}}{D_{blunt}/2}, \frac{\sigma_a^*}{\sigma_{a.blunt}} \right) \longrightarrow \sigma_a^*$$

$$\frac{D_{sharp}}{2} f_{inversion} \left(\frac{R_{sharp}}{D_{sharp}/2}, \frac{\tau_a^*}{\tau_{a,sharp}} \right) = \frac{D_{blunt}}{2} f_{inversion} \left(\frac{R_{blunt}}{D_{blunt}/2}, \frac{\tau_a^*}{\sigma_{a,blunt}} \right) \longrightarrow \tau_a^*$$

Raggi di controllo

Number of Cycles to failure, Nf

Number of Cycles to failure, Nf

SED per i provini lisci
$$\overline{W}_{1,plain} = \frac{1}{2E} \sigma_a^*$$

$$\overline{W}_{3,plain} = \frac{1}{2G} \tau_a^*$$

$$\overline{W}_{3,plain} = \frac{1}{2G} \tau_a^*$$

$$R_{1} = \frac{D_{sharp}}{2} f_{inversion} \left(\frac{R_{sharp}}{D_{sharp}/2}, \frac{\sigma_{a}^{*}}{\sigma_{a,sharp}} \right)$$

$$R_{3} = \frac{D_{sharp}}{2} f_{inversion} \left(\frac{R_{sharp}}{D_{sharp}/2}, \frac{\tau_{a}^{*}}{\tau_{a,sharp}} \right)$$

Simulazioni agli elementi finite parametriche

SED per **sollecitazione nominale applicata unitaria** in funzione del raggio di controllo

SED per sollecitazione nominale applicata unitaria

Effetto fase

Ipotesi:

Il danneggiamento a fatica è causato dai picchi di tensione principale massima

Stress state:

Effetto fase

$$SED(\theta) = \frac{\sigma_{principal}^2}{2 E}$$

$$SED_{peak,0^{\circ}} = \frac{(\sigma + \sqrt{\sigma^2 + 4\tau^2})^2}{8E}$$

$$SED_{peak,90^{\circ}} = \frac{(\sigma + \sqrt{\sigma^2 + 4\tau^2})^2}{16 E}$$

$$\Delta SED_{peak} = \frac{(\sigma + \sqrt{\sigma^2 + 4\tau^2})^2}{16 E}$$

Effetto fase

$$\Delta SED_{peak} = \frac{(\sigma + \sqrt{\sigma^2 + 4\tau^2})^2}{16 E}$$

$$\tau = \lambda \sigma$$

attore di multiassialità

$$\Delta SED_{peak} = \sigma^2 \left(\frac{1 + 2\lambda + \sqrt{1 + 4\lambda^2}}{8 E} \right)$$

$$\sigma = \frac{\tau}{\lambda}$$

$$E = 2G(1 + v)$$

Da trasformare in energia modo III

Normalizzazione

$$\Delta SED_{peak} = \frac{\tau^2}{2 G} \left(\frac{1 + 2\lambda + \sqrt{1 + 4\lambda^2}}{8 \lambda^2 (1 + \nu)} \right)$$

Fattore di rafforzamento per:

- $\varphi = \pi/2$
- $\lambda = 1$

$$\left(\frac{1+2\lambda+\sqrt{1+4\lambda^2}}{8\,\lambda^2(1+\nu)}\right)\frac{1}{\varphi}$$
 rispetto all'angolo di sfasamento
$$\lambda=1$$

$$\alpha=\pi/2$$

$$3+\sqrt{5}$$

Ipotesi:

L'effetto rinforzante è linearmente proporzionale a ϕ L'effetto rinforzante è indipendente da λ

Fattore di rafforzamento che tiene conto dell'effetto fase, per sforzo di taglio unitario applicato

Criterio

Tiene conto dell'effetto fase

Ampiezza di sforzo

Rapporto di Poisson

Angolo di sfasamento(rad)

da predirre sfasamento(rad)
$$\overline{W}_{1,eq} = \left(\overline{\sigma_a}^{\alpha} \left(\frac{2 \sigma_a}{1 - R}\right)^{1 - \alpha}\right)^2 \overline{W}_{1,U}$$
 SED per stress unitario

Fattore di multiassialità

$$\overline{W}_{3,eq} = \left((\lambda \sigma_a)^{\beta} \left(\frac{2 \lambda \sigma_a}{1 - R} \right)^{1 - \beta} \right)^2 \overline{W}_{3,U}$$

 α , β = Material-dependent coefficients

$$\lambda = \tau_a / \sigma_a$$

Rapporto di carico $R=\sigma_{min}/\sigma_{max}$

Funzione di modulazione

SED del provino liscio, modo III

$$f = \left(\frac{1}{2} + \frac{ArcTan(\lambda - \lambda_{th})}{\pi}\right)$$

Determinazione di α e β

Prove a fatica sotto carichi modo I e modo III con rapporto di carico R=0.1

Fitting dei coefficient α e β

$$\left(\sigma_a^{\alpha} \left(\frac{2 \sigma_a}{1-R}\right)^{1-\alpha}\right)^2 \overline{W}_{1,U} = \overline{W}_{1,plain}$$

$$\left(\tau_a{}^{\beta}\left(\frac{2\,\tau_a}{1-R}\right)^{1-\beta}\right)^2 \overline{W}_{3,U} = \overline{W}_{3,plain}$$

Previsioni – Intaglio acuto

Number of Cycles to failure, Nf

Previsioni – Intaglio blando

Number of Cycles to failure, Nf

Criterio – Provini lisci

$$\frac{1}{2E}\left(\sigma_{a}^{\alpha}\left(\frac{2\sigma_{a}}{1-R}\right)^{1-\alpha}\right)^{2} + \frac{1}{2G}\left(1 - \frac{3+\sqrt{5}}{4\pi(1+\nu)}\varphi\right)\left((\lambda\sigma_{a})^{\beta}\left(\frac{2\lambda\sigma_{a}}{1-R}\right)^{1-\beta}\right)^{2} = \left((1-f)\ \overline{W}_{1,plain} + f\ \overline{W}_{3,plain}\right)^{2}$$

Ampiezza di sforzo da predirre

$$\sigma_{a,real} = \sigma_a \left(\frac{d_{F_{\max |nodule}}}{d_{F_{\max |pore}}} \right)^{1/6}$$

Previsioni – provini lisci

Number of Cycles to failure, Nf

Previsioni - Errori

Geometria provino	Condizioni di carico	σ _{a,exp} @ 5 million di cicli (MPa)	σ _{a,prdicted} @ 5 million di cicli (MPa)	Errore (%)
Liscio	λ=1, R=-1, φ=0°	90.62	93.28	2.94
Liscio	λ =1, R=-1, φ =90°	131.29	117.51	-10.50
Intaglio blando 60°	Axial, R=0.5	45.30	44.76	-1.18
Intaglio blando 60°	λ =1, R=-1, φ =0 $^\circ$	81.68	85.58	4.78
Intaglio blando 60°	λ =1, R=-1, φ =90°	104.54	99.08	-5.22
Intaglio blando 60°	λ =2, R=-1, φ =0°	48.12	54.44	13.11
Intaglio blando 60°	λ =2, R=-1, ϕ =45°	60.63	61.05	0.70
Intaglio blando 60°	λ =2, R=0.1, φ =45 $^{\circ}$	32.53	31.77	-2.33
Intaglio acuto 60°	λ=1, R=-1, φ=0°	73.39	72.65	-1.00
Intaglio acuto 60°	λ =1, R=-1, φ =90°	92.98	82.79	-10.97

Errore RMS @ 5 millioni di cicli = 5.27 %

Ofonderie ariotti

Resistenza a fatica multiassiale di provini lisci e intagliati estratti da grandi getti di ghisa duttile EN-GJS-600-3: un approccio Strain Energy Density per la sensibilità ai difetti

M. Pedranz*, C. Santus, V. Fontanari, D. Lusuardi, F. Berto, M. Benedetti

*Dipartimento di Ingegneria Industraile, Università degli Studi di Trento, via Sommarive 9, 38123 Trento, Italia matteo.pedranz@unitn.it

36° Congresso Tecnico di Fonderia

21-22 Novembre 2022