

Resistenza a fatica multiassiale di provini lisci e intagliati estratti da grandi getti di ghisa duttile EN-GJS-600-3: un approccio Strain Energy Density per la sensibilità ai difetti

M. Pedranz*, C. Santus, V. Fontanari, D. Lusuardi, F. Berto, M. Benedetti

*Dipartimento di Ingegneria Industraile, Università degli Studi di Trento, via Sommarive 9, 38123 Trento, Italia

matteo.pedranz@unitn.it

36° Congresso Tecnico di Fonderia

21-22 Novembre 2022

Introduzione

Le **ghise sferoidali** trovano sempre più applicazione in importanti settori industriali, come la produzione di energia eolica, le presse e le infrastrutture.

L'alta castabilità consente di produrre **componenti grandi e con forme complesse**, che di solito sono esposti a **carichi multiassiali variabili nel tempo**.

Le cricche a fatica nucleano generalmente sui piani sottoposti alla massima ampiezza di sollecitazione normale.

Il **carico fuori fase migliora le proprietà a fatica**, mentre è generalmente dannoso per altri materiali metallici, come gli acciai.

Proponiamo un **nuovo criterio di fatica multiassiale** basato sulla densità di energia di deformazione (SED) per ghise duttili, in grado di tenere conto dell'effetto fase, nonché degli altri parametri di fatica multiassiale.

Dati sperimentali

Materiale: ghisa duttile EN-GJS-600-3, con matrice perlitica

Dati sperimentali

Carico assiale

Carico torsionale

 10^{7}

Strain energy density (SED) La **rottura a fatica**, per un generico intaglio, avviene verifica quando la densità di energia di

Approccio locale

deformazione (SED) mediata su un volume di controllo raggiunge un valore SED critico:

W_c è definito come il SED di un provino liscio:

$$\frac{\tau^2}{2G}$$
 for mode III loading

Questo criterio presuppone che il **volume di controllo** e il **SED** di un campione liscio assumano valori diversi per il carico in modo I e III.

 $\frac{\sigma^2}{2E}$

for mode I loading

$$\overline{W} = W_c$$

$$\overline{W} = W_c$$

Dati sperimentali

Distribuzione dei difetti

Tomografia computerizzata

Strain energy density Raggi di controllo

Funzioni di inversione

Raggi di controllo

Simulazioni agli elementi finite parametriche

G fonderie ariotti

SED per sollecitazione nominale applicata unitaria in funzione del raggio di controllo

SED per sollecitazione nominale applicata unitaria

Effetto fase

Ipotesi:

Il danneggiamento a fatica è causato dai picchi di tensione principale massima

Stress state:

$$\begin{bmatrix} \sigma Sin(\vartheta) & \tau Sin(\vartheta + \varphi) \\ \tau Sin(\vartheta + \varphi) & 0 \end{bmatrix}$$

Effetto fase

Ipotesi:

L'effetto rinforzante è **linearmente proporzionale a \phi** L'effetto rinforzante **è indipendente da** λ Fattore di rafforzamento che tiene conto dell'effetto fase, per sforzo di taglio unitario applicato

(1) fonderie ariotti

Determinazione di $\alpha \in \beta$

Prove a fatica sotto carichi modo I e modo III con rapporto di carico R=0.1

 $\left(\sigma_a^{\ \alpha} \left(\frac{2 \sigma_a}{1-R}\right)^{1-\alpha}\right)^2 \overline{W}_{1,U} = \overline{W}_{1,plain}$

Fitting dei coefficient $\alpha \in \beta$

Previsioni – Intaglio acuto

Number of Cycles to failure, Nf

Previsioni – Intaglio blando

Number of Cycles to failure, Nf

Criterio – Provini lisci

G fonderie ariotti

Previsioni – provini lisci

Previsioni - Errori

Geometria provino	Condizioni di carico	σ _{a,exp} @ 5 million di cicli (MPa)	σ _{a,prdicted} @ 5 million di cicli (MPa)	Errore (%)
Liscio	λ=1, R=-1, φ=0°	90.62	93.28	2.94
Liscio	λ =1, R=-1, φ =90°	131.29	117.51	-10.50
Intaglio blando 60°	Axial, R=0.5	45.30	44.76	-1.18
Intaglio blando 60°	λ=1, R=-1, φ=0°	81.68	85.58	4.78
Intaglio blando 60°	λ =1, R=-1, φ =90°	104.54	99.08	-5.22
Intaglio blando 60°	λ=2, R=-1, φ=0°	48.12	54.44	13.11
Intaglio blando 60°	λ =2, R=-1, φ =45°	60.63	61.05	0.70
Intaglio blando 60°	λ =2, R=0.1, ϕ =45°	32.53	31.77	-2.33
Intaglio acuto 60°	λ=1, R=-1, φ=0°	73.39	72.65	-1.00
Intaglio acuto 60°	λ=1, R=-1, φ=90°	92.98	82.79	-10.97

Errore RMS @ 5 millioni di cicli = 5.27 %

Resistenza a fatica multiassiale di provini lisci e intagliati estratti da grandi getti di ghisa duttile EN-GJS-600-3: un approccio Strain Energy Density per la sensibilità ai difetti

M. Pedranz*, C. Santus, V. Fontanari, D. Lusuardi, F. Berto, M. Benedetti

*Dipartimento di Ingegneria Industraile, Università degli Studi di Trento, via Sommarive 9, 38123 Trento, Italia

matteo.pedranz@unitn.it

36° Congresso Tecnico di Fonderia

21-22 Novembre 2022