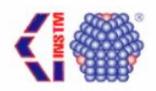
POTENZIALITÀ E CRITICITÀ NEL RICICLO DELLE SABBIE DI FONDERIA

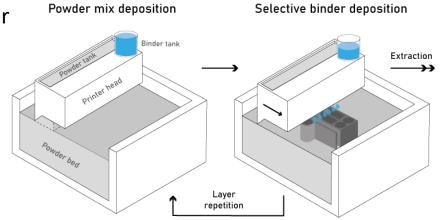

Evento finale del progetto
"Nuovi processi di riciclo per le sabbie di fonderia:
innovazione finalizzata all'ottenimento di materiali ad alto valore aggiunto"

Upcycling di scarti industriali tramite manifattura additiva di grandi dimensioni

Prof. ing. Paolo Colombo Dipartimento di Ingegneria Industriale Università di Padova

paolo.colombo@unipd.it

- Foundry sand as part of the powder bed in Binder Jetting
- Inorganic binder based on a geopolymer (metakaolin + alkaline solution)
- Additive manufacturing of large scale fully inorganic components
- Potential applications: ranging from building components to coastal protection

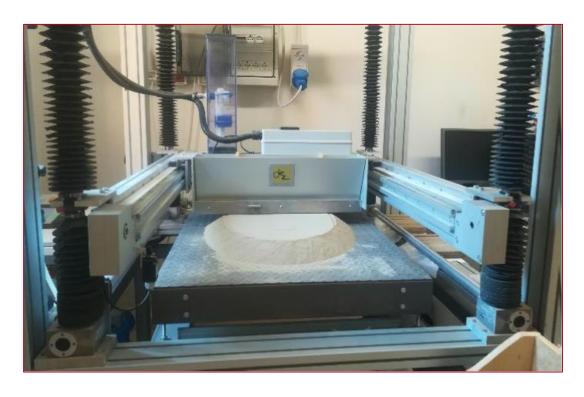


Powder-based 3D Printing (Binder Jetting)

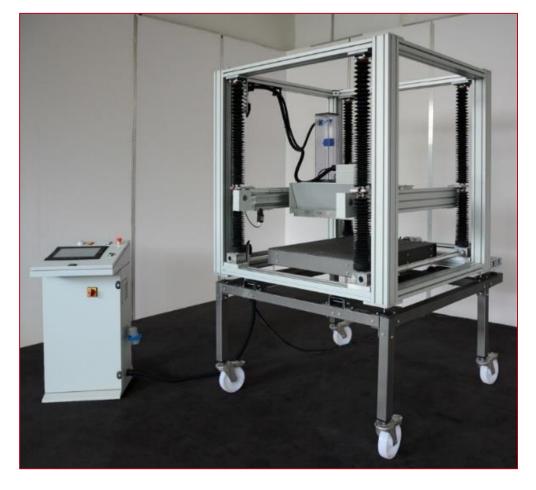
THE PROPERTY OF THE PROPERTY OF THE PARTY OF

The process steps are:

- 1. Creation of the powder bed/creation of the first layer
- Selective deposition of the activating liquid+ immediate recoating of the printed layer
- 3. Re-deposition of the new layer of powder
- 4. Repetition of the cycle till the end of the part
- 5. Extraction and cleaning of the part



Powder-based 3D Printing (Binder Jetting)



• Large scale AM: 600 x 600 x 600 mm

• Voxel resolution: 3 mm³

• 192 nozzles

• Printing speed: 10 - 50 mm/sec

Note: the binder is provided in part in the powder bed and in part through the liquid activating solution

Binder Jetting of recycled sand

(Reactive) Powder bed

- Foundry Sand, inert aggregate (70 to 80 wt%). Two types (1A and 11A)
- Metakaolin, reactive powder (20 to 30 wt%; 55 wt% SiO₂, 39 wt%Al₂O₃)

C	Caratteristiche richieste	Campione
s	abbia a maggior contenuto di fase morfa e ad alto contenuto di ilice e allumina. Granulometrica naggiore di 300 micron.	1A (alto contenuto Si e Al, granulometría maggiore)
e	abbie cristalline e/o amorfe con ontenuto di metalli, carbonio, cc. Granulometrica maggiore di 00 micron.	11A (elevato contenuto di metalli, granulometria non fine)

Liquid

Alkaline solution, (sodium/potassium silicate + sodium/potassium hydroxide + water), 19 wt% SiO₂, 16 wt% Na₂O/K₂O, 65 wt% H₂O

Printing condition

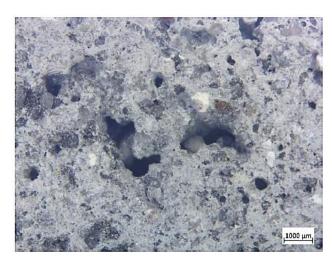
• One day on the printing bed, extraction and cleaning. Two curing temperature (T_room e T_60°C). Test after 10 days

- Amount of Metakaolin and liquid binder computed on the basis of the desired geopolymer formulation
- Jetting of liquid binder controlled by pressure drop and nozzle opening time

Binder Jetting of recycled sand

Printed part Sand 1A 20 wt% metakaolin

Printed part Sand 11A 20 wt% metakaolin


10 giorni	Geometric density [g/cm^3]	Pa [%]	P [%]	Compressive strength [MPa]	Dev. Std.	Flexural strength [MPa]	Dev. Std
1A	1,5865	33,82	35,78	5,2	1,301	2,3	1,041
1A_C40	1,5732	35,42	36,48	5,0	0,628	2,3	0,557
11A	1,8928	29,46	32,95	4,5	0,733	1,7	0,058
11A_C40	1,7885	34,63	39,63	4,1	1,147	1,6	0,153

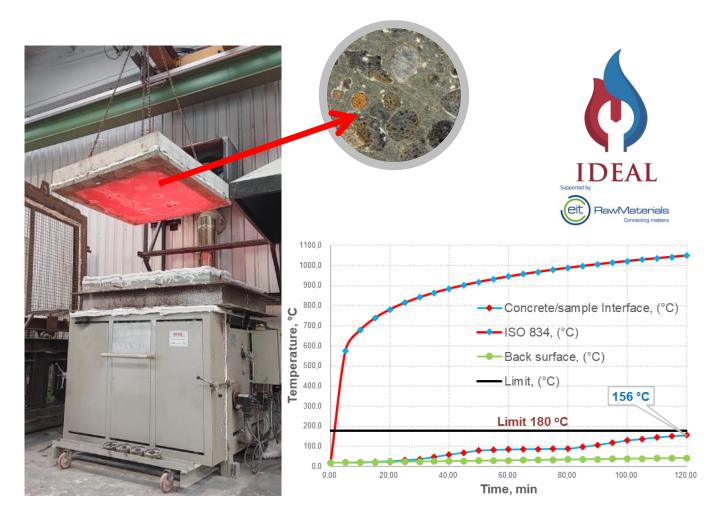
Binder Jetting of recycled sand

Printed part
Sand 1A_
30 wt% metakaolin

7 giorni	Geometric density [g/cm^3]	Pa [%]	P [%]	Compressive strength [MPa]	Dev. Std.	Flexural strength [MPa]	Dev. Std
1A	1,4890	39,61	40,78	6,3	0,786	2,9	0,058
1A_C60	1,5456	39,03	41,08	7,2	0,729	2,4	0,153

Binder Jetting Case Studies at DII

(all samples contain > 50wt% sand)


Construction sector elements

Thermal and sound insolation, sewage hub, thermal storage, fire protection element

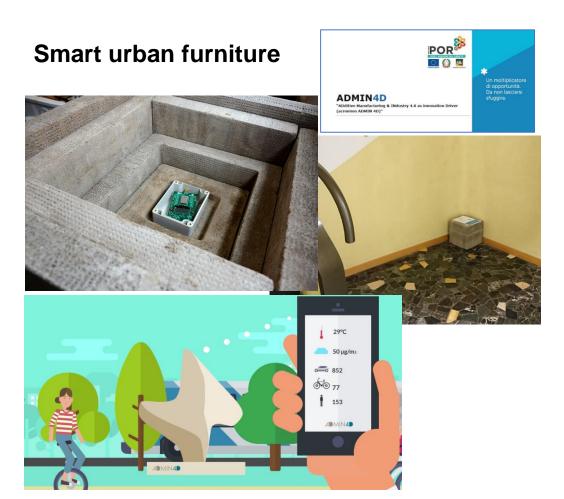
https://www.desamanera.com/

Coastal protection

Artificial reef

Artwork copies

The Indian Girl Erastus Dow Palmer 36 x 44 x h 120 cm



Binder Jetting Case Studies at DII

https://www.desamanera.com/

https://www.desamanera.com/admin-4d-la-smart-manufacturing-del-futuro/

Design

Tavoli Palladio
Progetto: Arch. Tognon
70 x 70 x 54 cm³ e 60 x 60 x 70 cm³

https://www.palladioscale.com/

https://www.desamanera.com/

Building sector

Sewer pipes and connectors

Fire protection of tunnel structures (pipes, cables)

Binder Jetting Case Studies at DII

D3Vero Molds for blown glass

https://www.desamanera.com/

Conclusion and future work

- It is possible to upcycle foundry sand to fabricate inorganic, large scale components by Additive Manufacturing (Binder Jetting)
- Optimal amount of metakaolin reactive powder is 30 wt%
- Sand 1A (clean) possessed a certain degree of reactivity towards an alkaline solution (→ it might be possible to reduce the content of reactive metakaolin in the powder bed formulation)
- Printed parts are stable in contact with boiling water (→ completed geopolymerization reaction)
- Strength and density of the parts suitable for some applications (urban furniture, non-load-bearing parts, coastal protection)